Estas nuevas neuronas llamadas "interneuronas V2a" son capaces de transmitir señales a la médula espinal para ayudar a efectuar el movimiento. Los científicos de las universidades de San Francisco y California crearon dichas células a partir de células madres que podían reparar lesiones. Les colocaron las células en la médula espinal de ratones y observaron que las interneuronas germinaron y se integraron con el resto.
Las interneuronas V2a transmiten señales del cerebro a la médula espinal, donde finalmente se conectan con las neuronas motoras que se proyectan hacia los brazos y las piernas. Las interneuronas cubren largas distancias, se proyectan hacia arriba y hacia abajo de la médula espinal para iniciar y coordinar el movimiento muscular, así como la respiración. El daño a las interneuronas V2a puede cortar las conexiones entre el cerebro y las extremidades, lo que contribuye a la parálisis después de las lesiones de la médula espinal.
“Las interneuronas pueden reorientarse después de lesiones de la médula espinal, lo que las convierte en un prometedor objetivo terapéutico”, dice el autor principal Todd McDevitt, investigador senior en Gladstone. “Nuestro objetivo es volver a conectar los circuitos dañados mediante la sustitución de interneuronas dañadas para crear nuevos caminos para la transmisión de señales en todo el sitio de la lesión”, adelanta.
Varios ensayos clínicos están probando terapias de reemplazo celular para tratar lesiones de la médula espinal. La mayoría de estos ensayos implican células progenitoras neurales derivadas de células madre, que pueden convertirse en varios tipos diferentes de células del cerebro o de la médula espinal, u oligodendrocitos, que crean las vainas de mielina que aíslan y protegen las células nerviosas. Sin embargo, estos enfoques tampoco intentan o no pueden producir de manera fiable los tipos específicos de neuronas adultas de la médula espinal, como las interneuronas V2a, que transmiten a largas distancias y reconstruyen la médula espinal.
En el estudio actual, publicado en ‘Proceedings of the National Academy of Sciences’, los investigadores produjeron interneuronas V2a de células madre humanas por primera vez. Identificaron un cóctel de sustancias químicas que poco a poco persuadieron a las células madre a desarrollarse desde células progenitoras de la médula espinal a las interneuronas V2a deseadas. Al ajustar las cantidades de tres de los productos químicos y cuándo se añadió cada uno, los científicos refinaron su receta para crear grandes cantidades de interneuronas V2a a partir de células madre.
Trabajando en colaboración con Linda Noblede la Universidad de California, San Francisco (UCSF), los científicos trasplantaron las interneuronas V2a en las médulas espinales de ratones sanos. En su nuevo entorno, las células maduraron apropiadamente y se integraron con las células existentes de la médula espinal. Es importante destacar que los animales se movieron normalmente después de que se trasplantaron las interneuronas y no mostraron signos de deterioro.
Los investigadores dicen que su siguiente paso es trasplantar las células en ratones con lesiones de la médula espinal para ver si las interneuronas V2a pueden ayudar a restaurar el movimiento después de que se haya producido el daño. También están interesados en explorar el papel potencial de estas células en modelos de trastornos neurodegenerativos del movimiento como la esclerosis lateral amiloide.
FUENTE: GD (Granada Digital)
Las interneuronas V2a transmiten señales del cerebro a la médula espinal, donde finalmente se conectan con las neuronas motoras que se proyectan hacia los brazos y las piernas. Las interneuronas cubren largas distancias, se proyectan hacia arriba y hacia abajo de la médula espinal para iniciar y coordinar el movimiento muscular, así como la respiración. El daño a las interneuronas V2a puede cortar las conexiones entre el cerebro y las extremidades, lo que contribuye a la parálisis después de las lesiones de la médula espinal.
“Las interneuronas pueden reorientarse después de lesiones de la médula espinal, lo que las convierte en un prometedor objetivo terapéutico”, dice el autor principal Todd McDevitt, investigador senior en Gladstone. “Nuestro objetivo es volver a conectar los circuitos dañados mediante la sustitución de interneuronas dañadas para crear nuevos caminos para la transmisión de señales en todo el sitio de la lesión”, adelanta.
Varios ensayos clínicos están probando terapias de reemplazo celular para tratar lesiones de la médula espinal. La mayoría de estos ensayos implican células progenitoras neurales derivadas de células madre, que pueden convertirse en varios tipos diferentes de células del cerebro o de la médula espinal, u oligodendrocitos, que crean las vainas de mielina que aíslan y protegen las células nerviosas. Sin embargo, estos enfoques tampoco intentan o no pueden producir de manera fiable los tipos específicos de neuronas adultas de la médula espinal, como las interneuronas V2a, que transmiten a largas distancias y reconstruyen la médula espinal.
En el estudio actual, publicado en ‘Proceedings of the National Academy of Sciences’, los investigadores produjeron interneuronas V2a de células madre humanas por primera vez. Identificaron un cóctel de sustancias químicas que poco a poco persuadieron a las células madre a desarrollarse desde células progenitoras de la médula espinal a las interneuronas V2a deseadas. Al ajustar las cantidades de tres de los productos químicos y cuándo se añadió cada uno, los científicos refinaron su receta para crear grandes cantidades de interneuronas V2a a partir de células madre.
Trabajando en colaboración con Linda Noblede la Universidad de California, San Francisco (UCSF), los científicos trasplantaron las interneuronas V2a en las médulas espinales de ratones sanos. En su nuevo entorno, las células maduraron apropiadamente y se integraron con las células existentes de la médula espinal. Es importante destacar que los animales se movieron normalmente después de que se trasplantaron las interneuronas y no mostraron signos de deterioro.
Los investigadores dicen que su siguiente paso es trasplantar las células en ratones con lesiones de la médula espinal para ver si las interneuronas V2a pueden ayudar a restaurar el movimiento después de que se haya producido el daño. También están interesados en explorar el papel potencial de estas células en modelos de trastornos neurodegenerativos del movimiento como la esclerosis lateral amiloide.
FUENTE: GD (Granada Digital)
Comentarios
Publicar un comentario
Gracias por comentar. Te rogamos que seas preciso y educado en tus comentarios.