EXOSOMAS, BOLSAS DE VIAJE CELULARES

Aunque cueste creerlo, nuestro organismo funciona como una enorme red de paquetería formada por billones de células que se comunican entre sí, formando intrincadas redes muy difíciles de detectar.

En ese proceso cobran especial importancia los exosomas: unas estructuras diminutas formadas en el interior de las células. Durante décadas se pensaba que no servían para nada, pero en los últimos años están siendo objeto de numerosos estudios científicos que han demostrado su enorme utilidad.

Hace 15 años, dos artículos científicos concluyeron que estos pequeños paquetes extracelulares no se desechaban, como se creía, sino que viajaban a través de nuestro organismo, compartiendo información genética. "Pasaron de ser vistos como cubos de basura a ser considerados pequeños paquetes con mensajes de comunicación entre células”, afirma Rubén García, microbiólogo del Centro Joshlin sobre Diabetes de la Universidad de Harvard.

Por ejemplo, explica García, los niveles y el contenido de estas vesículas en la sangre cambian con la obesidad, la diabetes, el hígado graso, la lipodistrofia o las enfermedades cardiovasculares, lo que podría producir distintos síntomas, como puede ser la inflamación hepática.

En cada gota de sangre hay circulando millones de exosomas cuyo origen nos es desconocido. Una vez liberados por cada tejido es muy difícil saber de dónde salieron. Una manera de saberlo podría ser leer su contenido de microARNs y que códigos llevan: si tienen códigos de células hepáticas, entonces es probable que se liberaron por el hígado. Si vemos que estos exosomas tienen niveles anormales de su contenido de microARNs o proteínas, podemos inferir que algo no está yendo bien el hígado de este paciente y estudiarlo más a fondo", explica García.

Los científicos descubrieron que los exosomas liberados por células tumorales juegan un papel muy importante en los procesos de metástasis. Según explica el experto, desde hace mucho tiempo se sabe que los distintos cánceres no producen metástasis en otros tejidos al azar, sino que cada uno suele extenderse en un pequeño grupo de órganos, al menos en las etapas más iniciales de la enfermedad. Así, los exosomas liberados por cada tipo de cáncer parecen contener unas proteínas de señalización específicas en su superficie que determinan a qué tejido deben ir para liberar su contenido. Este contenido, explica, hace que las células del tejido diana remodelen la matriz celular y la hagan más ‘acogedora’ para las células tumorales. Además, producen más vasos sanguíneos y liberan moléculas inflamatorias, más ‘atractivas’ para las células tumorales. De este modo, cuando la célula tumoral consigue liberarse del tumor inicial, ya tiene marcada la hoja de ruta para encontrar una ‘nueva casa’ en su órgano de destino.

Resulta que no todos los microARN son liberados en los exosomas- explica García-. Solo lo hace el 25%, mientras que aproximadamente un 25% de ellos son extremadamente eficientes en ser cargados en las vesículas. Hace muchos años que los científicos nos preguntamos qué era lo que regulaba ese proceso. Lo que hemos descubierto es que una parte de las 20-22 letras de estos microARNs son como pequeños códigos de barras que la célula lee y le marca si debe ponerlo en las vesículas o dejarlo sin enviar”.

En primer lugar, los científicos midieron centenares de microARNs en varios tipos celulares de ratones, tanto en los exosomas liberados como en la propia célula que los producía, y empezaron a buscar patrones comunes para los microARNs con fuerte tendencia a ser cargados en vesículas. Usando herramientas informáticas, comprobaron que había códigos de secuencias más abundantes en cada uno de estos grupos e identificaron aquellas proteínas lectoras que los reconocían y promovían la carga de microARN.

Después verificaron cómo funcionaba el mensaje: descubrieron que el simple hecho de introducir estos códigos en los microARN hacía que otras células a distancia recibiesen mayor cantidad de esas moléculas, y vieron cómo las células mensajeras conseguían regular los genes diana de las células distantes.

Además de indagar sobre las posibles metástasis, conocer de cerca estos intrincados procesos de comunicación intracelular podrían servir para el tratamiento de muchas enfermedades. Por ejemplo, los científicos de Harvard están estudiando las funciones en los procesos inflamatorios y metabólicos asociados con distintas dolencias. Entre otras funciones, podrían servir para reducir los niveles de colesterol.

Comentarios